首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   3篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   4篇
  2012年   10篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
排序方式: 共有44条查询结果,搜索用时 515 毫秒
31.
Stearoyl lysophosphatidylcholine (LPC) has recently been proven protective against lethal sepsis by stimulating neutrophils to eliminate invading pathogens through an H2O2-dependent mechanism. Here, we demonstrate that stearoyl LPC, but not caproyl LPC, significantly attenuates circulating high-mobility group box 1 (HMGB1) levels in endotoxemia and sepsis by suppressing endotoxin-induced HMGB1 release from macrophages/monocytes. Neutralizing antibodies against G2A, a potential cell surface receptor for LPC, partially abrogated stearoyl LPC-mediated suppression of HMGB1 release. Thus, stearoyl LPC confers protection against lethal experimental sepsis partly by facilitating the elimination of the invading pathogens and partly by inhibiting endotoxin-induced release of a late proinflammatory cytokine, HMGB1.  相似文献   
32.
Terminal drought is a major constraint to chickpea productivity. Two component traits responsible for reduction in yield under drought stress include reduction in seeds size and root length/root density. QTL‐seq approach, therefore, was used to identify candidate genomic regions for 100‐seed weight (100SDW) and total dry root weight to total plant dry weight ratio (RTR) under rainfed conditions. Genomewide SNP profiling of extreme phenotypic bulks from the ICC 4958 × ICC 1882 population identified two significant genomic regions, one on CaLG01 (1.08 Mb) and another on CaLG04 (2.7 Mb) linkage groups for 100SDW. Similarly, one significant genomic region on CaLG04 (1.10 Mb) was identified for RTR. Comprehensive analysis revealed four and five putative candidate genes associated with 100SDW and RTR, respectively. Subsequently, two genes (Ca_04364 and Ca_04607) for 100SDW and one gene (Ca_04586) for RTR were validated using CAPS/dCAPS markers. Identified candidate genomic regions and genes may be useful for molecular breeding for chickpea improvement.  相似文献   
33.
34.
The overexpression of multidrug resistance protein 1 (MRP1) by tumor cells results in multidrug resistance (MDR) to structurally unrelated anticancer drugs. Circumvention of MDR by combination of chemosensitizers with antitumor compounds is a new field of investigation in cancer chemotherapy. Much effort has been put-in recently to identify the modulators/inhibitors of MRP1 to overcome the MDR. 1,4-Dihydropyridine (DHP) derivatives are indicated to be a new class of MRP1 inhibitors in cancer treatment. Molecular docking studies were carried out on 48 newly synthesized DHP derivatives with the crystal structure of MRP1 to gain some structural insights on the binding mode and possible interactions with the active site of MRP1 (NBD1). The 10 top-ranked molecules were selectively evaluated, experimentally for their MRP1 inhibitory effect using the insect cell membrane MRP1 ATPase assay. The inhibitory capacity (IC(50) concentrations) of the test compounds was compared with the reported IC(50)- or the K(i)-concentrations for benzbromarone, a standard MRP1 inhibitor. Amongst the compounds tested, compounds IA(1) and IIA(5) were found to exhibit a potent MRP1 inhibitory action with IC(50) values of 20±4 and 14±2 μM (mean±SD), respectively as compared to benzbromarone (IC(50)=4 μM). The compound IIA(5), in particular was found to be more potent than IA(1) in accordance with the docking results. These new DHP derivatives possess promising characteristics for their development as MDR reversal agents.  相似文献   
35.
36.
37.
The objective of the present study was to develop a protocol for in vitro plantlet regeneration and Agrobacterium tumefaciens-mediated genetic transformation using immature cotyledon explants of Indian Kino tree (Pterocarpus marsupium Roxb.). Immature cotyledon explants excised from 9-day-old axenic seedlings produced optimal callus on Murashige and Skoog (MS) medium supplemented with 1.07 μM α-naphthalene acetic acid (NAA), after 2 weeks of culture. When the above said callus was incubated on MS + 8.90 μM 6-benzylaminopurine (BAP) + 1.07 μM NAA, a regeneration frequency of 60.41 % with shoot number and length 12.2 ± 0.85 and 1.4 ± 0.13, respectively, was observed. For further shoot multiplication and elongation, these cultures were transferred onto MS + 4.40 μM BAP. Elongated shoots dipped in 19.60 μM indole-3-butyric acid (IBA) for 24 h and then cultured on ½MS + 2.85 μM IBA, 75 % shoots developed roots and 95 % of plantlets survived in field condition. Organogenic callus was co-cultivated with the A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301with ß-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes and grown on MS + 8.90 μM BAP + 1.07 μM NAA (RM) + 200 μM acetosyringone for 2 days and then transferred to MS + 8.90 μM BAP + 1.07 μM NAA + 20 mg/l hygromycin + 250 mg/l cefotaxime (SIM) and 4.40 μM BAP + 15 mg/l hygromycin + 200 mg/l cefotaxime (SEM). The putatively transformed shoots were subsequently rooted on ½MS + 2.85 μM IBA + 20 mg/l hygromycin (SRM), after pulse treatment for 24 h with 19.60 μM IBA. Successful gene transfer into putatively transformed plantlets was confirmed by histochemical GUS assay, PCR and RT-PCR analysis. Southern blot analysis of regenerated plantlets confirmed the integration of hpt gene in transgenic plantlets. In the present study, a rate of 20.92 % transformation frequency was achieved and the genetic transformation protocol presented here may pave way for genetic manipulation of this multipurpose legume tree.  相似文献   
38.

Background

Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.

Results

We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.

Conclusion

The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.  相似文献   
39.
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.  相似文献   
40.
To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1–7 seasons and 1–3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号